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Prandti-Meyer magnetogasdynamic flows were investigated by M. 
N. Kogan [1, 2], who found the regions of existence of these flows and, 
by using the method of characteristics to solve the equation of motion 
of the gas, indicated the typical features of flows of this type. 

The vortical problem of the plane flow of ideal gas with infinite 
conductivity in the case of the adiabatic process for a magnetic field 
parallel to the velocity field is considered. An analog of Sedov's equa- 
tion [3] in the plane of the variables "pressure, stream function," the 
criterion of existence and the equation of generalized Prandt1-Meyer 
flow are obtained. A solution for the latter equation in the transonic 
region is found. A method of constructing such flows for the case of a 
compressible fluid flowing past certain profiles is described. 

1. The magnetohydrodynamic equations for an ideal gas with in- 
finite conductivity in steady-state flow have the form [4] 

t 1 1 l 
~ v  s + r o t v X v = - ~ p - 4 - ~ 4 - ~ p  H• H 

H div v -- (H'V) v + (v 'V) g = 0, 

div p v =  0, p /  p v =  const ( ? =  Cp/Cv). (1.1) 

Equations (1.1) still have the same form when weconvert tothe dimen- 
sionless quantities v12 , H~, p~, and p~, deflnedbytherelationships[5] 

v ~ Vo.V~, tI ~ H0.It~, p = p0p~, P~PoP: ,  r = l r ~ ,  

r = ix  + j~,  Ho = Vo ]/'P0, P0 = p0Vo ~ . 

Here p~ and v0 are the density and velocity of the incoming undis- 
turbed flow from infinity and l is a characteristic length. Henceforth 
we will regard Eqs. (1.1) as dimensionless equations in which the sub- 
scripts for the relative quantities are omitted. 

It was shown in [6] that in the ease of motion of a gas in a magnetic 
field parallel to the velocity of the flow the equality 

H = kpv (k = cons 0 (1.2) 

holds. In this ease the Bernoulli integral and the velocity vortex are 
expressed in the form 

_5_+  ~ ~_~ r 
"f--I p - - T - - t '  

o% ovx ks (op% opv~l 
~ =  a~ Oy ~-\'-6~x ~ ]" (1.3) 

It is clear from (1.3.2) that a magnetic field parallel to the velocity 
field causes vortical motion in the ease of the adiabatic process(1.1.4), 
governed by the system [6] 

aq~ i oM oq~ i oM 
v = = z ( p ) - M = . p  oy ' v v =  x ( & ~  o o ~ '  

~s + ~ ~-~_ ~ [i - k-"p l-~ 
2 T--I  p - - T - - I '  ~ ( P ) ~  4hA " 

(1.4) 

Here q= r is the virtual potential and ~ = ~(x, y) is thestream 
funerion. 

2. As independent variables we take the stream function @ and the 
pressure p (Sedov variables [3], p. 300), completing the conversion 
from the formulas 

o,p o,~ Iop o M ax / Op 
Oz /~ ' 0:4 /~ ' 

Oz" Oy Ox Oy :r Ovx D(vx, x / ~ ,  p) 
A =  oM Op Op oM @ z~ 

0% D (vv, y 1% p) 
Ox A (2.1) 

Hence, after simple transformations we arrive at the expressions 

0x O cos 20 
0--~ = A ( p ' 0 ) '  A(p, 0 ) = ~ ( v s i n 0 ) + v ~  sin0 ' 

Oy 0 cos 20 
O~p ~ - -  B (p' O)' B (p, 0) ~-~p(VCOS0)--vtt ~ ,  

k s 
~x =~ Ix (p) = a~ (4n --  k2p) ' 

v x = v c o s O ,  v = v s i n O .  (2.2) 

Here v is the velocity modulus, O is the angle of inclination of the 
velocity vector to the x-axis, and a is the speed of sound. Using for- 
mulas (2.2), we obtain the relationships 

Ox i / OB OA 
= - oo--~7~/~o~s o ~ + ~in 0~o~ 0 ~ ) ,  

Op = OO/OM 0 ~ -}- sin 2 0 . (2.3) 

Introducing the complex variable z = x + iy, we obtain from (2.2) 
and (2.3) the condition of solvability in the form 

( 0 0 )  0 1 0 vS~-  -{-2~'p [v~otg20]= 
v Op 0{ t oo 0s l} 

= - ~  ~ V \Op]  + 2 v ~ c t g 2 0 0 p  ~ _  . (2.4) 

Equation (2.4) is a nonlinear equation and is a generalization of the 
Sedov equation to the case of magnetogasdynamies. 

Function z(?, p) is determined by means of quadratures from Eqs. 
(2.2) and (2.3), which are equivalent to the differential relationship 

dz ---- e "m ~Uv aO "4- 20 Ov q 
U ~ 2v~ctg --  i~-~pjdM --  

i l /cos OB OA 
O0 / 0 M 0 ~ p  - -  s in  0 ~ -p)  dp}.  ( 2 . 6 )  

For a prescribed relationship p = p(p) functions g(p) and v(~0, p) will 
be known, and Eqs. (2.4) and (2.6) will be a complete system of equa- 
tions of the problem. 

8. In the derivation of Eq. (2.4) we made the essential assumption 
that 00/0~ ~ 0. If 00/~p -= 0. then we obtain a flow of Hquid for which 
the angle 0 depends only on the pressure: 0 = 0(p). In [3] (p. 318) it 
was shown that a Prandtl-Meyer flow corresponds to such a condition in 
the case of isentropie flow of an ideal gas. The general solution of Eq. 
(2.2) in this case will be 

z ( * , p ) = - - , [ i  O-~(ve 'Sl - -2~vctg2Oe'~ (3.1) 

where w(p) is an arbitrary function of its argument. 
To determine the function 0 = 0(p) we can easily find the equation 

00 \2 O0 1 O~v 
-~p) -l- 2~ ctg 20 Op v Op2 = O. (3.2) 

Hence we obtain 

opO0 = _ ~x ctg 20 -4- (Ix 2 ctg~ 20 q- v Op 2 I " (3.3) 

Equation (3.3) can provide a qualitative characteristic of the analog 
of Prandtl-Meyer flows in magnetogasdynamics. From (3.3) we obtain 
the criterion of existence of flows of this type: 

t 02v 
1~2ctg~20>~ v OpS " (3.4) 
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It is clear that first, in the presence of a magnetic field parallel 
to the velocity field, the flow analogous to t~andtl-Meyer flows will 
be vortical in the case of the adiabatic process and, secondly, such a 
flow can exist not only in the supersonic, but also in the subsonic, regions. 

From (3.3), using a Newtonian binomial expansion, we arrive at 
the equation 

dO [ 1 02v ] 
~ ' = - - t x c t g 2 O = ~ t c t g 2 0  t-t 21~Zvctg220 Op~ l- . . . .  (3.5) 

We consider the case of transonic generalized Prandtl-Meyer flow. 
Then, since equalities 0Zv/0p 2 = 0 and M = 1 are equivalent, we con- 
fine ourselves to two terms. In acco~anee with the plus or minus sign 
before the root in (3.3) we obtain two families of solutions of the equa- 
tions 

dO 1 Oh, 
Op 2p.v Op 2 tg 20, 

dO 1 O~v 
dp 2p.v Op~ tg 20-- 2p ctg 20. (3.6) 

The solution of Eq. (3.6.1) will be 

o = yaro~in d,)]. 
\.} l~v Op 2 (3J) 

Equation (3.6.2) can be put in the form 

i d t Oh, 
2p.v Opt" (3.8) 

The substitution sin z 20 = t brings (3.3) to the Hnear inhomogeneons 
equation 

iR 8 2 Oh, = ~ - ~ - ~ - p , / .  (3.9) \ 

Then the solution of (3.6.2) will be 

O ~ ~" arc s i n  

X I [ l t e x p ( - -  2 f R d p ) ] d p .  4_ IV' C2f �9 (3.1o) 

It follows from (3.7) and (3.10) that the point 0 = 0 is unattainable 
in the given formulation of the problem. The special nature of this 
point can also be seen from Eq. (3.2). 

In the absence of a magnetic field (k = 0, g = 0) and taking into 
account that the conversion is made from OZv/Op z < 0 to OZv/Op 2 > O, 
we find that 0 = 0 when M = I [7], for which we must put e z = 0, and 
restrict e t sufficiently. 

The sign in (3.3) and, hence, in the solution from (3.7) and (3.10) 
is chosen so that the flew turns through an increasingly greater angle 
with increase in the local Math number. 

4. Using the arbitrariness of function o~(p) in solution (3.1),we Can 
construct an analog of the l~andtl-Meyer flow with an arbitrary stream- 
line. In this way in some cases we can construct the flow around given 
profiles which are not finite bodies and ensure the presence of a zone 
of undisturbed flow (for instance, a convex wall, where the flow is un- 
disturbed at the start of the bend). 

Let it be required to find a solution for flow around a body whose 
contour can be considered as prescribed by the streamline ~ = 0; the 
equation of this line in complex form can be put in the form 

z = ~'  ( 0 ) ,  ( 4 . 1 )  

where as a parameter we take the slope of the tangent to the x-axis 
which is obviously equal to 0. Replacing 0 by p from solution (3.7) or 
(3.10), we find 

z = p (0 (p)) = t7 (p) .  (4.2) 

comparing (3.1) and (4.2) for ~ = O, we obtain 

z = F ( p )  = • ( p )  . ( 4 . 3 )  

Thus, the arbitrary function to(p) is completely determined when 
the contour of the streamlined body is prescribed. 

I take this opportunity to express my thanks to G. I. Nazarov for 
valuable advice and comments. 
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